THERMOCONVECTIVE WAVES IN A LAYER WITH
FREE BOUNDARIES ’

B. M. Berkovskii and A. K. Sinitsyn UDC 536.25

We show that in a thin layer of a liquid, for which the influence of its boundaries is substantial,
the propagation of weakly attenuating thermoconvective waves is possible close to and beyond
the stability threshold. We obtain the characteristics of weakly attenuating harmonics.

In a previous paper [1] it was shown that in a horizontal layer of a thermally compressible liquid,

" with a temperature gradient parallel to the graviational force (we assume that the liquid expands when
heated, i.e., that 8 /8T < 0; in the contrary case, we select the opposite direction for the temperature
gradient), the propagation of weakly attenuating thermoconvective waves is possible. The authors have
studied the propagation of small one-dimensional perturbations of the temperature, velocity, and pressure
under the assumption that the horizontal boundaries alone stipulate the mechanical equilibrium of the layer
and in no way affect the propagation of the waves, i.e., that the condition A/h < 1 is satisfied, where A is
the wave length of the waves in question and h is the layer thickness. Such an assumption can apparently
be made only for a thick layer. We have not excluded the possibility that, in principle, it is not realizable.
At least in thin layers a substantial influence of the boundaries on the characteristics of the waves should
be expected.

1t is possible to have weakly attenuating thermoconvective waves propagating in a thin layer of a
liquid? In order to answer this question we need to study the propagation of thermoconvective waves with
the influence of the boundaries taken into account.

We consider a horizontal semiinfinite layer of a liquid, bounded above and below by two planes between
which a constant temperature difference is maintained. We assume that 8p/9T < 0, and that the tempera-

ture gradient v is parallel to the gravitational force ; On a vertical wall bounding the liquid from the side
we have a source of periodic perturbations of the temperature, velocity, and pressure, the nature of which
we do not specify here. The perfurbations propagate along the layer in the form of thermoconvective waves,
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Flg 1. Attenuation decrement versus Rayleigh number (Pr = 1): Curves 1, 2, 3, and
4 are for w equal to 3, 1, 0.1, and 0,01, respectively.

‘ Fig. 2. Group velocity versus Rayleigh number (Pr = 1): Curves 1, 2, 3, and 4 are
for w equal t0 3, 1, 0.1, and 0.01, respectively.
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Fig. 3. Wave length versus Rayleigh
number (Pr = 1): Curves 1, 2, 3, and
4 are for wequal to 3, 1, 0.1, and 0.01,
respectively.
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_the characteristics of which are determined by the quantity v, the thickness h, the properties of the liquid,
and the boundary conditions. It is known that in the case v = 0 (the liquid is isothermal) the thermoconvec-
tive waves are strongly damped, the logarithmic damping decrement 6 > 27, which corresponds to an exp
(2m)-fold damping per wave length.

We investigate how the characteristics of the thermoconvective waves vary with an increase in the
value of the temperature gradient y. It should be expected that for a given layer there is a critical value
Yorit for which there occurs a principal change in the nature of the thermoconvective waves, if only because
of the fact that there is a critical value y, beyond which even the mechanical equilibrium of the layer is un-
stable [2]. Thus there is a stability threshold of thermoconvective waves, which is determined by both the
properties of the layer and the character of the periodic perturbations on the boundaxy (the amplitude, the
frequency, the shape). It is necessary to take into account the fact that beyond the stability threshold
the amplitude of flows in the layer is not determined only by the amplitude of the perturbations on the side
wall.

To answer the question concerning the possibility of the propagation of weakly attenuating waves in
the layer, we investigate waves up to and beyond the stability threshold. We formulate the problem mathe-
matically, We choose a cartesian system of coordinates. The x axis ig directed along the layer, the y axis
normal to it. Our starting point is from the well known equations of natural convection in the Boussinesq
approximation [2]. We consider only waves of small amplitude. This enables us to neglect the convective
terms in the equations; furthermore, we can expect that the stability threshold of thermoconvective waves
of small amplitude will be close to the stability threshold of the layer, a fact which is well known. By
virtue of the fact that in an above-critical region the amplitude of the convection ariging is proportional to
(ARa/‘Ra)i/ 2, we can assume that linear equations will give a good description of the process, even in a
neighborhood beyond the stability threshold of the waves [3]. Consequently, for the study of thermocon-
vective waves in the layer of liquid it is necessary to solve the following dimensionless system of linear
equations:

a oy )

Here, u and v are the velocity components in the direction of the x and y axes, respectively; T = 1—y
+0 is the temperature; p is the pressure; Gr = Bh'y/v? is the Grashof number; and Pr = v/a is the Prandtl
number. '

The boundary conditions on the side wall are
x=0; B=8;sinmyexp(inf); v=0,sinay eip (iof). 2)
Horizontal boundaries; we consider three versions here: '

a) two solid planes;
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b) one solid plane and one free surface;
c) two free surfaces.

The last case is characterized by the simplicity of the formulas and is considered in the present
paper. For this case we have

y=0,1 6=0; v=0;__6u/6y=0. 3)
We seek a solution of the equationsr 1)-(3) in the form ”
, .(u;. p) = (U, ) cos my exp{i (ot — k)], @
(v, 8) = (V, ©)sinmy exp [i (wf — kx)].
Here U, V, L, © are constants; k =k + ik, is a wave vector. After substituting the equations (4) into the

equations (1), we obtain the following equation defining the relationship between the wave vector k and the
frequency w:

lio - (B - 7?)/Pr] (i -- k2 - n?) (k% - n®) = k2 Gr. (5)

The damping decrement, as is well known, may be expressed in terms of the components of the wave
vector as follows: 6 = 2mk,/k¢, and, as can be seen from equation (5), it depends on the frequency, the
Prandtl number, and the Grashof number. To answer the question as to whether we can have propagation
of waves with weak damping, and, if so, for what parameter values, we need to solve equation (5) for k.
Equation (5) has 6 roots, three of which can be rejected because of the condition ky < 0. From the roots
which remain we must select the one to which the minimum damping decrement corresponds. The entire
procedure of solving equation (5) and selecting an appropriate k was carried out on an electronic digital
computer,

Figure 1 shows how the attenuation decrement 6 depends on the Rayleigh number Ra for various values
of w, The point Ra = Rgpjt corresponds to the threshold of stability of the mechanical equilibrium of the
layer with free boundaries. Under our assumptions the Rayleigh number Ra, corresponding to the stability
threshold of thermoconvective waves generated by periodic perturbations on the side wall, differs little

from Rerit

An analysis of the graphs shows that with an increase in the Rayleigh number Ra, the attenuation
decrement decreases for all frequencies, i.e., the presence of a negative temperature gradient across the
layer leads to a weakening of the damping of the thermoconvective waves. However, the form of this de-
pendence differs substantially for the various frequencies close to the critical number Reopjt. For suffi-
ciently large w (Curves 1, 2) there is no essential change in the attennation decrement as Ra increases,
even when passing through the stability threshold. The picture is completely different in the case of small
w (Curves 3, 4). With an increase in Ra the attenuation decrement varies up to the stability threshold as -
for large w, but close to Ra = Rpyjt it decreases substantially, Harmonics appear corresponding to the
weak damping of the thermoconvective waves (Curve 4). The region of weak damping is determined by
Rayleigh numbers larger than some critical value Rpyit and by sufficiently small value of w. For weakly
damped waves the propagation speed of perturbations increases sharply (Fig. 2). The wave lengths, as
can be seen from Fig. 3, vary between the limits of 2h and 3h. This indicates that the boundaries have a
substantial influence on the propagation of thermoconvective waves.

We may thus conclude that in a thin layer of a liquid the propagation of weakly attenuating thermo-
convective waves is possible in the presence of a temperature gradient parallel to the gravitational force,
but only close to and beyond the stability threshold.

We give numerical estimates for a layer of air of centimeter thickness: h=10"2m, » = 15.10~°
m?/sec, a = 27. 10-% m%/sec. Weak attenuation, can be seen from Fig. 1 (6 = 107%), is possible for w = 102,
Ra = 700, In terms of dimensional quantities this corresponds to a frequency of w = 10-° Hz and ¥ = 300°/m.
Under these conditions a perturbation attenuates 2.73~fold over 100 wave lengths, i.e., in two meters. We
note that in the absence of a vertical temperature gradient a perturbation in such a layer is attenuated by as
much as half the height of the layer, i.e., by approximately 5- 1073 m,

The weak attenuation beyond the stability threshold can be explained if we take into account the fact
that after the breakdown of mechanical equilibrium a periodic convective structure develops. For the case
in which the perturbations on the side wall are, in some sense, commensurate with the period and the in-
tensity of this convection, we can expect them to be weakly attenuated.
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Fig. 4. Attenuation decrement. Fig. 5. Wave length.

Having shown that in a layer of liquid, heated from below, weak attenuation of thermoconvective
waves is possible close to and beyond the stability threshold, we find it of interest to study the behavior of
such waves in viscoelastic media under the same conditions. It is a known fact (see [4]) that in a layer of
viscoelastic liquid, heated from below, two kinds of instability are possible: monotonic and oscillatory.

It should therefore be expected that in such liquids the process of thermoconvective wave propagation would
be a richer one.

To elucidate the fundamental features of the propagation of thermoconvective waves in viscoelastic
media, we use the Maxwell model of a viscoelastic liquid, the rheological equation for which, taking in-
compressibility into account, has the form

—‘9‘1—‘&) (6)

Here the oy are the components of the viscous stress tensor; Ty is the characteristic relaxation time;
and vj are the velocity components.

Thus, just as we did above, we limit ourselves to the consideration of waves of small amplitude in a
layer with free boundaries.

The dimensionless equations for a viscoelastic medium can be written in the Boussinesq approximation
in the form

ou ap o affu o doy,
ot ox = ox | dy
® __op o 00n g
o dy ox Oy
T I LAy} @
ox ox dy
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ot ) dy dx ot Pr
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The boundary conditions remain as before, namely, the conditions (2) and (3). The convective motion
in the layer of the viscoelastic liquid is determined by four dimensionless parameters: Gr, 7, Pr, w. The
parameter 7 characterizes the elastic properties of the medium. When 7 = 0, the system (7) describes an
ordinary Newtonian liquid.

As before, we seek a solution of the equations (7), (2), and (3) in the form
©, p, On, 0.0 = U, 11, Zy, Z,,) cos my exp [i (of — kx)],

' 8)
(@, 0, 01, = (V, ©, Zy,)sinnyexpli (of — kx)].



U For w and k we obtain the dispersion equation
’ A io (jot + 1) (@ + 7%) [io -+ (& + a?)/Pr]
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| e il " ! This equation is valid in a region of Rayleigh numbers not ex-
W \R 2 ceeding a threshold value for which instability commences. This is
0 : N ; connected with the fact that in the region beyond the threshold the
! M amplitude of the convective motion in the layer is no longer deter-
I I mined by the amplitude of perturbations on the side wall. A de-
020 300 #0 Koy 500 RyRog Ra tailed study of oscillatory and monotonic instability in a layer of a
Fig. 6. Group velocity. viscoelastic liquid was given in [4]. We merely note here that for an

increase in the Rayleigh number as a function of 7 three possibilities

arise: the monotonic instability threshold may be below, may coin-
cide with, or it may be above the oscillatory instability threshold. For the case in which 7 — 0, i.e., when
the liquid is weakly elastic, the first of these possibilities obtains. When T is sufficiently large, the crisis

- of instability is associated with oscillatory perturbations. We can expect that in a layer of a viscoelastic

liquid, with a vertical temperature gradient present, two types of weakly attenuating thermoconvective waves
can propagate: the one type is present close to the monotonic instability threshold and the second type is
present close to the oscillatory instability threshold; in the third possibility, simultaneous propagation of
both types of waves is possible.

Figures 4,5, and 6 show the calculated characteristics of thermoconvective waves in a layer of a
viscoelastic liquid as a function of Ra. The Curves 1 to 4 correspond to 7= 0.6, Pr = 10, and w = 0.1; 1;
7.6; and 10, As Ra increases, the oscillating instability for these values of the parameters appears for
Ra = Ry before the appearance of the monotonic instability (Ra = Ry,). The frequency of the neutral oscil-
lations is w = 7.6. From Fig. 4 we see that waves having frequencies close to the frequency of the neutral
oscillations (Curves 3, 4) have small attenuation decrements; waves with small frequency are strongly
damped (Curves 1, 2). The lengths of the weakly attenuating waves are found to be close to the height of
the layer (Fig, 5). The group velocities show almost nho change with a change in Ra (Fig. 6).

Curves 5-9 correspond to T = 0,5, Pr =10, w=1; 0,1; 0.001; 15; 8.3. In this case, as Ra increases,
a monotonic instability first appears for Ra = Ryj; however, the threshold of the oscillating instability is
found in the immediate vicinity beyond the threshold of the monotonic instability Ra = Rgyy). From Fig. 4
we see that under such conditions a weak attenuation of the waves with frequencies close to 0 is possible
(Curve 7), just as in the case of an ordinary liquid, and also with frequencies close to the frequency of the
neutral oscillations, w = 8.3 (Curves 8, 9). The lengths and group velocities of the low frequency weakly
attenuating waves behave just as in an ordinary liquid. The lengths of the weakly attenuating waves with
frequencies close to the neutral frequency turn out to be two times smallexr than the lengths of the low fre-
quency waves (Fig. 5). The group velocities remain almost constant (Fig. 6).

We present numerical estimates. If we take a viscoelastic liquid with the parameters 7g = 1 sec,
v = 10-° m%/sec, B = 10-8 deg—i, h= 0,014 m, and AT = 60°, then weak attenuation is possible for the fre-
quency w = 5+10-% and 5 Hz.

It should be remarked that at present no viscoelastic liquids are known with parameters for which
the oscillating instability appears before the monotonic instability. However, the rapid strides being made
in the polymer industry make it appear hopeful that such liquids will be synthesized in the near future. It
will then be possible to observe the propagation of weakly attenuating thermoconvective waves of high fre-
quencies, predicted earlier in our paper.

NOTATION

is the frequehcy of fluctuations;

is the wavelength;

is the thickness of liquid layer;

is the gravity force;

is the vertical temperature gradient;
is the fluid density;

is the thermal expansion coefficient;
is the kinematic viscosity;
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e =
B o

is the dynamic viscosity;

is the thermal diffusivity;

is the temperature;

is the Rayleigh number;

Ra = Ra—Rgpit: Repit are the critical Rayleigh numbers.
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